Laboratory and research group for Optical Spectroscopy of Nanostructures
www.osn.if.pwr.edu.pl
Head: prof. Jan Misiewicz
People:
  • 5 professors
  • 14 research associates
  • 14 PhD students
  • 10-20 students
Focus areas:
  • Physics of new materials and structures - band gap engineering (prof. Robert Kudrawiec)
    Optical properties and band structure of new semiconducting materials for photonic and electronic applications studied by modulation techniques (photoreflectance, contactless electroreflectance) and photoluminescence.
    Representative papers:
    1. Contactless electroreflectance studies of surface potential barrier for N- and Ga-face epilayers grown by molecular beam epitaxy, R. Kudrawiec et al., Appl. Phys. Lett. 103, 052107 (2013)
    2. Temperature dependence of photoluminescence from InNAsSb layers: The role of localized and free carrier emission in determination of temperature dependence of energy gap, M. Latkowska et al., Appl. Phys. Lett. 102, 122109 (2013)
    3. Correlations between the band structure, activation energies of electron traps, and photoluminescence in n-type GaNAs layers, R. Kudrawiec et al., Appl. Phys. Lett. 101 082109 (2012)
    4. Contactless electroreflectance studies of Fermi level position on c-plane GaN surface grown by molecular beam epitaxy and metalorganic vapor phase epitaxy, R. Kudrawiec et al., Appl. Phys. Lett. 100 181603 (2012)
    5. Unusual broadening of E0 and E0 + DSO transitions in GaAsBi studied by electromodulation spectroscopy, R. Kudrawiec et al., J. Appl. Phys. 111 066103 (2012)
       
  • Physical phenomena in Quantum Dots (prof. Grzegorz Sęk)
    Optical, electronic and excitonic properties of novel epitaxial nanostructures, with a special focus on quantum objects of unusual shape like quantum rods and quantum dashes investigated by e.g. micro-photoluminescence, photon correlation spectroscopy and modulation techniques.
    Representative papers:
    1. Carrier trapping and luminescence polarization in quantum dashes, A. Musiał et al., Phys. Rev. B 85, 035314 (2012)
    2. Electronic structure and optical properties of 1.55 mm emitting InAs/InGaAsP quantum dash tunnel injection structures, W. Rudno-Rudziński et al., Sem. Sci. Tech. 27, 105015 (2012)
    3. On the mechanisms of energy transfer between quantum well and quantum dashes, G. Sęk et al., J. Appl. Phys. 112, 033520 (2012)
    4. Single photon emission in the red spectral range from a GaAs-based self-assembled quantum dot, Ł. Dusanowski et al., Appl. Phys. Lett. 101 103108 (2012)
    5. Multiexcitonic emission from single elongated InGaAs/GaAs quantum dots, Ł. Dusanowski et al., J. Appl. Phys. 111, 063522 (2012)
       
  • Magneto-optics (prof. Leszek Bryja)
    Physics of composite fermions in the regime of fractional quantum Hall effect.
    Representative papers:
    1. High magnetic field spin splitting of excitons in asymmetric GaAs quantum wells, J. Jadczak et al., Phys. Rev. B 86, 245401 (2012)
    2. Cyclotron-resonant exciton transfer between the nearly free and strongly localized radiative states of a two-dimensional hole gas in a high magnetic field, L. Bryja et al., Phys. Rev. B 85, 165308-1 (2012)
    3. Optically induced charge conversion of coexistent free and bound excitonic complexes in two-beam magnetophotoluminescence of two-dimensional quantum structures, J. Jadczak et al., Phys. Rev. B 85, 195108-1 (2012)
       
  • Nanocrystals and related materials (prof. Artur Podhorodecki)
    Synthesis, functionalization and characterization of nanocrystaline materials, sol-gel systems and rare-earth-doped structures for biological and medical applications.
    Representative papers:
    1. On the nature of carrier relaxation and ion-ion interactions in ultrasmall b-NaYF4:Eu3+ nanocrystals - effect of the surface, A. Podhorodecki et al., Nanoscale 5, 429 (2013)
    2. Advantages of indirect excitation of Eu3+ ions in ultra-small b-NaYF4, M. Bański et al., J. Mater. Chem. C 1, 801 (2013)
    3. Influence of annealing temperature on the electron-lattice coupling strength in terbium doped yttrium alumina perovskite xerogels embedded in nano-porous anodic alumina, G. Zatryb et al., Optical Materials 35, 1230 (2013)
    4. Correlation between matrix structural order and compressive stress exerted on silicon nanocrystals embedded in silicon-rich silicon oxide, G. Zatryb et al., Nanoscale Res. Lett. 8, 40 (2013)
    5. Passivation of lanthanide surface sites in ultrasmall NaYF4:Eu3+ nanocrystals, M. Bański et al., J. Nanoparticles Research 14, 1228 (2012)
       
  • Dynamics of optical processes - time-resolved spectroscopy (dr. Marcin Syperek)
    Relaxation process, characteristic lifetimes and energy transfer channels in complex nanostructures, low-dimensional structures and new materials.
    Representative papers:
    1. Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots, M. Syperek et al., Phys. Rev. B 87, 125305 (2013)
    2. Influence of electronic coupling on the radiative lifetime in the (In,Ga)As/GaAs quantum dot-quantum well system, M. Syperek et al., Phys. Rev. B 85, 125311 (2012)
    3. Electron and hole spins in InP/(Ga,In)P self-assembled quantum dots, M. Syperek et al., Phys. Rev. B 86, 125320 (2012)
       
  • Mid to far infrared spectroscopy - Fourier Transformed Infrared Spectroscopy (dr. Marcin Motyka)
    Characterization of materials and nanostructures in the infrared range up to 2 mm and exploration of their applicative potential, especially for gas sensing.
    Representative papers:
    1. Increasing the optical transition oscillator strength in GaSb-based type II quantum wells, F. Janiak et al., Appl. Phys. Lett. 100 231908 (2012)
    2. Type II quantum wells on GaSb substrate designed for laser-based gas sensing applications in a broad range of mid infrared, M. Motyka et al., Optical Materials 34, 1107 (2012)
    3. Temperature dependence of the energy gap and spin-orbit splitting in a narrow-gap InGaAsSb solid solution, M. Motyka et al., Appl. Phys. Lett. 100 211906 (2012)
       
  • Surface Photovoltage Spectroscopy (dr. Piotr Sitarek)
    A contactless version of surface photovoltage spectroscopy - gives an information about, e.g. transition energies between localized and non-localized stated.
    Representative papers:
    1. Temperature dependent surface photovoltage spectra of type I GaAs1-xSbx/GaAs multiple quantum well structures, P. Sitarek et al., J. Appl. Phys. 113, 073702 (2013)
    2. Optical Transitions between Confined and Unconfined States in p-Type Asymmetric GaAs/InGaAs/AlGaAs QW Structures, P. Sitarek et al., Acta Physica Polonica A 120 849 (2011)
    3. Optical studies of type I GaAs1-xSbx/GaAs multiple quantum well structures, P. Sitarek et al., J. Appl. Phys. 105, 123523 (2009)
       
  • Semiconductor nanostructures numerical analysis and simulations of band alignment (dr. Janusz Andrzejewski, dr. Krzysztof Ryczko, dr. Marta Gładysiewicz)
    Computational analysis and simulations (with e.g. 8-band and 10-band kp models) of band structures for low-dimensional structures and new materials.
    Representative papers:
    1. On optimizing Jacobi-Davidson method for calculating eigenvalues in low dimensional structures using eight band kp model, J. Andrzejewski, J. of Computational Physics 249, 22 (2013)
    2. Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells: Spectroscopic experiment versus 10-band kp modeling, K. Ryczko et al., J. Appl. Phys. 113, 233508 (2013)
    3. Band structure and the optical gain of GaInNAs/GaAs quantum wells modeled within 10-band and 8-band kp model, M. Gladysiewicz et al., J. Appl. Phys. 113, 063514 (2013)
    4. On the oscillator strength in dilute nitride quantum wells on GaAs, K. Ryczko et al., J. Appl. Phys. 111, 123503 (2012)
Equipment:
  • Emission and optical modulation spectroscopy (PL, PR, CER)
    • spectral range: 0.2 mm - 17 mm
    • temperature range: 5 - 400 K
    • excitation range (PLE): 0.3 mm - 3 mm
       
  • Microphotoluminescence
    • spectral range: 0.2 mm - 2 mm
    • temperature range: 5 - 300 K
    • spatial resolution: less then 1 mm
    • spectral resolution: 10 pm
    • magnetic fields: up to 5 T
       
  • Time resolved spectroscopy
    • spectral range (detection/excitation): 0.2 mm - 3 mm
    • temperature range: 5 - 300 K
    • time resolution: less then 1 ps
       
  • Fourier transform spectroscopy
    • spectral range: 0.4 mm - 2 mm
    • temperature range: 5 - 400 K
       
  • Photon correlation spectroscopy
    • spectral range: 0.2 mm - 2 mm
    • temperature range: 5 - 300 K
    • time resolution: 50 ps
       
  • Magneto-optics
    • spectral range: 0.2 mm - 3 mm
    • temperature range: 1.5 - 300 K
    • magnetic field: up to 16 T
       
  • Equipment for synthesis and functionalization of crystalline nanostructures
International projects:
  • WideLase (FP7)
    Monolithic widely tunable interband cascade lasers for safety and security
     
  • LIEPOLATE (bilateral Polish-German)
    Light-matter interaction of exciton polaritons at telecommunications wavelengths
     
  • Sindbad
    Synthesis of inorganic nanocrystals doped by lanthanide ions for bio-medical applications
     
  • COST MP0805
    Novel gain materials and devices based on III-V-N compounds
     
  • DeLight (FP7)
    Development of low-cost technologies for the fabrication of high-performance telecommunication lasers
     
  • SensHy (FP7)
    Photonic sensing of hydrocarbons based on innovative mid infrared lasers
     
  • ZODIAC (FP6)
    Zero order dimension based industrial components applied to telecommunications
     
  • GIFT (FP5)
    GaAs-based emitters for fibre-optical data and telecommunications