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The purpose of this paper is to give a brief review on characteristic features of electronic states

in graphene and its multi-layers mainly from a theoretical point of view, together with topics on

roles of electron-phonon interactions studied recently.

The electron motion in graphene is governed by Weyl’s equation for a neutrino or the

Diracequation with vanishing rest mass characterized by a velocity which is about 1/300 of the light 

velocity. The pseudo-spin wave function exhibits a sign change due to Berry’s phase when the

wave vector k is rotated around the origin and therefore has a topological singularity at k = 0. This

singularity is the origin of the peculiar behavior in the transport properties of graphene, such as the

minimum conductivity in the absence of a magnetic field, the quantum Hall effect, and the

dynamical conductivity [1], as well as the absence of backscattering in metallic carbon nanotubes

[2–4]. The neutrino equation is invariant under special time-reversal operation S corresponding to

the system with strong spin-orbit interaction. Because S is not the real time-reversal symmetry, it

can be destroyed by various perturbations, leading to interesting symmetry crossover characteristic

to the graphene system [5–8].

There are three different kinds of phonons contributing to electron-phonon interaction. They

are long-wavelength acoustic phonons, zone-center optical phonons, and zone-boundary phonons

[9]. In particular, optical phonons can be strongly modified by the Fermi-level tuning due to the

interaction [10,11]. Inter-layer interaction in bilayer graphene destroys the linear dispersion into an
approximate parabolic dispersion [12,13]. In this system, strong asymmetry in the potential of two

layers can be introduced by external fields, leading to band-gap opening and strong mixing of

symmetric and antisymmetric optical phonons [14,15].
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